
Evaluation of Models for Parsing Binary Encoded XML-based Metadata

Robbie De Sutter1, Christian Timmerer2, Hermann Hellwagner2, and Rik Van de Walle1

1 Multimedia Lab
Ghent University – IBBT, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

E-mail: {robbie.desutter;rik.vandewalle}@ugent.be
2 Dept. of Information Technology (ITEC)

Universität Klagenfurt, Universitätsstraße 65-67, A-9020 Klagenfurt, Austria
E-mail: {christian.timmerer;hermann.hellwagner}@itec.uni-klu.ac.at

Abstract: In multimedia applications, XML is being
increasingly used to represent metadata; examples are
MPEG-7 multimedia description schemes and MPEG-
21 usage environment descriptions. As with the media
data, the size of, or the overhead induced by, the XML
metadata is important, particularly when used on con-
strained mobile devices. Therefore, compression (binary
encoding) of the XML data becomes relevant to reduce
this overhead. Within the MPEG-7 standardization ef-
fort, a Binary Format for Metadata (BiM) was devel-
oped, providing good compression efficiency and facil-
itating random access into, and manipulation of, the
binary encoded bit stream.

In order to support processing of metadata streams
in the binary domain and making this task for client
applications as simple as possible, we are developing a
universal parser for handling both plain text and binary
encoded XML-based metadata. The parser exposes a
single interface making it transparent for the application
whether a plain text or a binary XML document is being
processed.

As part of this effort, this paper provides a detailed
study of five existing XML parser models and evaluates
their applicability to serve as a model for parsing binary
XML data, encoded using the BiM codec. Additionally,
the parser models are investigated against important us-
age scenarios enabled by BiM, such as dynamic updates
of XML data. From the five models, two are rejected
and one is only applicable for domain specific applica-
tions. Of the remaining two, one model is proposed as
preferred model because of different advantages over the
other model.

1. Introduction

Within the last decade, research in the area of multi-
media communication was more or less driven by Uni-
versal Multimedia Access (UMA) which aims to enable
seamless access to a rich variety of multimedia content
through heterogeneous networks and end-user devices
[1]. To support the concepts of UMA, various metadata
standards emerged for associating additional informa-
tion, i.e., metadata, to the content [2] as well as for

Acknowledgment. The research activities described in this pa-
per were funded by Ghent University, the Interdisciplinary Insti-
tute for Broadband Technology (IBBT), the Fund for Scientific
Research-Flanders (FWO-Flanders), the Belgian Federal Science
Policy Office (BFSPO), and the European Union.

describing the capabilities and characteristics of termi-
nals and networks [3]. The preferred format of metadata
is the Extensible Markup Language (XML). Due to the
fact that XML is based on plain text, the metadata can
be easily used by several applications, ranging from ed-
ucational services to geographical information systems
and surveillance, for instance. However, this represents
just the tip of the iceberg [4]. The recently finalized
part 7 of the MPEG-21 Multimedia Framework [5], bet-
ter known as MPEG-21 Digital Item Adaptation (DIA)
[3], is a perfect example. DIA standardizes how to de-
scribe the usage environment as well as how to describe
the structure of multimedia coding formats. The latter
makes it possible to easily adapt multimedia resources in
a coding-format independent way by manipulating the
corresponding XML descriptions [6].

In practice, however, using XML has some draw-
backs. The most import drawback is that the XML lan-
guage is inherently verbose. For bandwidth-constrained
devices such as cell phones, or in streaming applications,
this can be a burden. Even when General Packet Ra-
dio Services (GPRS) or other higher-speed wireless net-
works are being used - where bandwidth is no longer a
tight constraint - it must be taken into account that the
user may be charged for the transferred data volume.
Thus, the metadata overhead needs to be decreased in
order to reduce the user’s cost which contributes to a
positive user experience. As a side effect, this may im-
prove the performance of the device by decreasing the
amount of data it has to process.

Within the World Wide Web Consortium (W3C) and
the Moving Picture Experts Group (MPEG), this ver-
bosity issue has been recognized. While the former is
investigating this issue in a recently established working
group [7], the latter has already standardized a method
to encode XML data in binary form, known as Binary
Format for Metadata (BiM) [8]. The method was orig-
inally intended to binary encode MPEG-7 metadata;
however, due to its generic design most other XML data
can be binary encoded by BiM as well. For instance, in
the course of the MPEG-21 development, BiM will be
improved to provide optimal support for metadata de-
veloped within this standardization activity.

Although binary encoding of XML data solves the
verbosity problem, this technique also eliminates one of
the key benefits of XML: its plain text property and
thus human readability. However, XML merely struc-



tures the information and usually the applications be-
come aware of the semantics carried within the XML
document, by reading, interpreting, and manipulating
the XML data. For this purpose, applications make use
of an XML parser which should not be restricted to han-
dling plain text XML data only.

In this paper, we look at the requirements to create
a parser that is capable of handling regular plain text
XML and binary encoded XML (see Fig. 1). There-
fore we provide a detailed study of existing XML parser
models and evaluate their usefulness and applicability to
serve as a model for parsing binary encoded XML data
using the BiM codec. Additionally, the parser models
will be investigated against usage scenarios enabled by
BiM.

<?xml version="1.0"?>
…

DOM
SAX
Pull Parser
…

Plain text XML

reference 
software
(BiM vX)

MPEG-21 part 16

Tex
tu

al 
do

m
ain

Binary dom
ain

application

X
M

L 
P

A
R

S
E

R

0E 00 39 26 21 22 E3 
…

parser

plain-text xml binary encoded xml

xml source data

Figure 1. A client application handles plain-text or bi-
narized XML through a parser.

The remainder of this paper is organized as follows.
Section 2 describes the typical operations which an XML
parser should support. Subsequently, we discuss five
common XML parser models and their characteristics
in Section 3. In Section 4 we discuss BiM and the vali-
dation of the parser models regarding their applicability
to create a compliant parser for binary encoded XML
data. Finally, the paper is concluded in Section 5.

2. Common XML Parser Functionalities

While the available XML parsers differ in the details
of the functionality provided, they expose some common
basic operation sets.

Hereafter a client application is the application that
is using a parser. Further we define an XML token, or
simply token, as the combination of XML markup and
XML element content, both defined in [9].

2.1 Bootstrap

The bootstrap is the entry point of the parsing opera-
tion. In order to allow different implementations of the
same parser model, an interface offering the bootstrap
operations must be defined. The minimal operations
are:
• Resolve and open the physical source XML data
stream such as a file, an HTTP connection, and so on.

• Detect the encoding of the XML data stream. This
can be accomplished by using the information in the
XML prolog or by using a character encoding detection
algorithm such as suggested in Appendix F of [9].
• Prepare the stream for navigation and token opera-
tions as discussed in subsequent subsections.

Specific implementations of a parser model can of-
fer additional features such as enabling XML valida-
tion, performing normalization, supporting entity re-
placements, etc.

2.2 Navigation

The term navigation stands for the ability to move
through the XML data stream to reach a specific token.

A. Simple forward navigation
Every parser model must offer simple forward navi-

gation, either explicit or implicit. Simply forward navi-
gation allows the client application to move through the
XML stream one token at a time. This basic operation
is usually extended – and possibly concealed – by more
advanced forward navigation methods such as: go to the
next (start) tag, go to the first child element, go to the
last sibling, and similar operations.

B. Simple backward navigation
The basic operation of this kind of navigation is to

move back one token. This basic operation is usually
extended by more advanced backward navigation meth-
ods. Typical examples are: move to the parent node,
move to previous sibling, and move to the root node.
Simple backward navigation is offered by some parser
models.

C. Random navigation
This is the most flexible way for navigating through

the XML data stream. It allows the client application to
“jump” directly to certain parts in the XML stream. For
example, the client application can: jump to an element
with a specific ID attribute value, jump to a token with
a certain fully qualified name, and address a token by
an XPath1 expression. It depends on the parser model
if this form of navigation is available.

2.3 Token Operations

By applying the navigation operations, the client ap-
plication can select a single token in the XML data
stream. We call this token the current token. The next
step is to act upon the current token by, e.g., consuming
or manipulating it.

A. Token Consumption
All parser models must allow token consumption, also

called read functionality. In this context, “read” means
to investigate the current token and harvest the value
of the given token.

The main operation is the retrieval of the token type,
i.e., identify the current token as an element (a start
tag or an end tag), an attribute, text data, a CDATA

1W3C Recommendation, XML XPath Language, available at
http://www.w3.org/TR/xpath



section, a comment tag, a processing instruction, or ig-
norable white space. Each token exposes its value. Fur-
thermore, the start tag, the end tag, and the attribute
tokens also expose their name and namespace context2.
Advanced parsers can provide additional information,
such as the number of attributes and the number of
children in case of a start tag.

B. Token Manipulation
Some parser models allow the manipulation of the

XML data stream by adding new tokens or by deleting
selected tokens. Changing the current token can be seen
as a delete operation followed by an add operation. The
add operation has multiple provisions. For example, it
is not allowed to add a processing instruction to an at-
tribute token. The delete operation on an element token
must be seen as the removal of the current element and
all child elements, if any.

After all token manipulations are executed, the XML
data should be at least well-formed.

2.4 Auxiliary Operations

The auxiliary operations are not necessary for the
parsing of an XML data stream and as such are not
part of the parser models. However, they are provided
by most parser implementations as an aid for the client
application, such as localization of the current token in
the physical stream, token comparison, namespace pre-
fix lookup, duplication of a token, and so on.

3. Survey of Existing XML Parser
Models

If an application processes an XML data stream, it
accesses the XML data indirectly by using an XML
parser as shown in Fig. 1. Application developers can
choose from a wide range of different parsers, each parser
having its own possibilities, characteristics, and fields of
application. All these parsers are built according to a
particular XML processing model. When studying the
available parsers, five distinct models can be identified.

This section describes each model in detail, starting
from the oldest and original model developed by W3C,
namely the Tree Model. The other models described
are the Push and Pull Models, the Cursor Model, and
the Mapping Model. For each model, an example of a
parser and the typical model characteristics are listed.
This information is also summarized in Table 1. Other
available tools to process XML are briefly discussed in
the final subsection.

3.1 The Tree Model

This is the original and thus oldest model whereby
the tree structure characteristic of an XML document is
exploited. The XML tree is reconstructed in memory in
such a way that it closely reflects the XML data model
[10]. The parser grants the client applications access

2The namespace context comprises the used namespace, an
overview of all available namespaces for the given token and the
mapping of the namespace prefixes to the actual namespace.

to the in-memory tree and offers navigation throughout
the tree.

Example parser: Document Object Model (DOM)3

Characteristics:
• The complete navigation operation set is available.
• Token consumption and token manipulation.
• The client application fully controls the parser.
• Parsing the XML data is slow as the complete data
stream must be read in order to build the in-memory
tree structure before it is available to the client applica-
tion. As such, the XML data stream must be completely
received, e.g., the data must be entirely downloaded
from a HTTP connection, before the client application
can act upon the data.
• High memory requirements because the complete
XML data stream is mimicked in memory. For mem-
ory constrained environments such as a cell phone, these
high requirements can be problematic.

3.2 The Push Model

The second model that emerged after the Tree Model
was the Push Model. Its main goal was to address
the shortcomings of the Tree Model. The Push Model
states that a compliant parser reads the data stream
and for each XML token it encounters it generates an
event. The event contains implicit and explicit informa-
tion about the token that was read. By using an event
model, the parser pushes the information to the client
application.

Example parser: Simple API for XML (SAX)4

Characteristics:
• Simple forward navigation only.
• Token consumption only.
• The parser is in control, the client application does
not know when and if an event will be thrown. As such,
implementing the client application is by some seen as
difficult and unnatural.
• Very fast parsing.
• Very low memory requirements because the XML data
is not kept in memory.

3.3 The Pull Model

Because the event oriented programming model is
seen by some as a disadvantage, the Pull Model was
developed. Pull Model compliant parsers read only one
single token after being instructed by the client appli-
cation to do so. Information about the token can be
requested from the parser by the client application. As
such, the information is pulled from the parser by the
client application.

Example parser: XMLPull5

Characteristics:
• Simple forward navigation only.
• Token consumption only.

3W3C Recommendation, Document Object Level 3 Core
Specification, available at http://www.w3.org/TR/DOM-Level-3-
Core/

4Simple API for XML, available at http://sax.sourceforge.net
5Common API for XML, available at http://www.xmlpull.org



Table 1. Comparing XML parser models

Tree Model Push Model Pull Model Cursor Model Mapping Model
Navigation

forward navigation yes yes yes yes yes
backward navigation yes no no yes yes
random navigation yes no no yes yes

Token operations
token consumption yes yes yes yes yes
token manipulation yes no no optional yes

Processing speed
parsing slow fast fast fast slow
token consumption fast medium medium slow–fast fast
token manipulation fast n/a n/a fast fast

Memory requirements high low low low–high medium

• The client application controls and instructs the
parser when to act upon the data stream.
• Very fast parsing.
• Low memory requirements as only the current XML
token resides in memory.

3.4 The Cursor Model

The Cursor Model is very similar to the Pull Model,
but allows random access throughout the XML data
stream by directly addressing XML tokens using an
XPath expression. The random access makes it pos-
sible to target a specific part of the data and as such
create a view on the data. These views can be further
examined by the client application one token at a time,
like using a Pull Model parser. As such, the Pull Model
can be seen as a forward only and token consumption
only version of the Cursor Model.

Example parser: .NET XPathNavigator6

Characteristics:
• The complete navigation operation set is available.
• Token consumption and optionally token manipula-
tion.
• The client application controls the parser.
• Very fast parsing. However, depending on the XPath
expression, execution can vary in time and is parser im-
plementation dependent.
• Depending on the specific parser implementation, this
model has very low to high memory requirements.
It is important to note that a specific Cursor Model
parser implementation must make a tradeoff between
processing speed and memory requirements. Fast pro-
cessing and especially fast XPath navigation will require
to load the complete XML document into memory. En-
abling write access automatically implies that the very
low memory requirements are practically unreachable.

3.5 The Mapping Model

The fifth model differs from previous models as it
focuses more on the XML content than on the XML

6Microsoft .NET XPathNavigator, available at
http://msdn.microsoft.com

semantics. First, the model allows the creation of object
oriented classes based on the XML data structure. A
Document Type Definition (DTD), schema language, or
XML data stream analysis can be used to generate the
classes. Next, the XML data, and more specifically the
XML content, is mapped to instances of the created
object oriented classes. The client application can use
the instantiated object oriented classes directly just as
any other class instances.

Example parser: .NET XmlSerializer7

Characteristics:
• The complete navigation operation set is available.
• Token consumption and token manipulation.
• The client application uses the instantiated classes di-
rectly without the need to steer the parser.
• The creation of the classes adds an additional time-
cost factor to the parsing of the XML data.
• This model has medium memory requirements as the
complete XML data is stored in memory. However be-
cause the classes are optimized to the characteristics of
the XML structure and used data types, it requires less
memory than the Tree Model.
It must be mentioned that this model has several issues
that prevent a complete correct mapping of the XML
data model, such as the impracticality of handling mixed
content and preserving element sequence. Due to these
issues and the additional time-cost factor for class cre-
ation, the mapping model is mostly used for application
domain specific applications whereby the structure of
the XML data is known in advance.

4. Parsing Binary Encoded XML

4.1 Introduction

Our aim is to develop a universal parser capable of
handling plain text XML as well as binary encoded
XML. A typical usage scenario is as follows. A client
application receives an XML document (in plain text or
binary encoded) and uses a parser to handle the docu-
ment. The parser is compliant to one of the five models

7Microsoft .NET XmlSerializer, available at
http://msdn.microsoft.com



as described above and exposes its operation set to the
client application. The client application handles the
XML data through the exposed interface, unaware if
the parser is handling the XML document in binary or
plain text format.

4.2 MPEG-7 Binary Format for Metadata

This subsection is intended to provide basic informa-
tion about the BiM decoder. The reader is referred to
[11] for a detailed and complete description.

XML is binary encoded into a sequence of so-called
Access Units (AUs). Each AU is a standalone entity that
can be decoded by a BiM decoder. It contains schema
information and Fragment Update Units (FUUs). The
schema information is used to configure the decoder
which decodes the FUUs sequentially. Each FUU con-
tains the update command (i.e., add, replace, delete or
reset), the update context (i.e., identifying the location
in the XML document for applying the update com-
mand) and the update payload (i.e., the actual data).
Note that the update context uses XPath syntax which
identifies the exact location, i.e., one node where the
update command will be applied. The decoding results
in a description tree, comparable to an XML tree, and
valid against the received schema information.

4.3 Usage Scenarios

In order to evaluate the parser models for handling
BiM documents, we consider the following two scenar-
ios: traditional XML handling and handling dynamic
updates of XML data.

In the first scenario, i.e., traditional XML handling,
the complete XML document is known and will become
available for the parser. This also includes XML doc-
uments being downloaded from a network connection.
This scenario is common in current XML processing
where random access to the information in the XML
document is desired, e.g., for transforming the whole
XML document into another one or for searching the
metadata describing a multimedia repository.

The second scenario takes dynamic updates of an
XML document into account which is an integral part
of the functionality provided by MPEG-7 BiM. BiM al-
lows the stepwise construction of the description tree by
the incorporation of dynamic changes, i.e., updates, into
the existing XML description tree. These updates may
become available during the actual parsing process.

The usefulness of the second scenario is illustrated by
the following example. Suppose a cell phone describes
its usage environment and sends this information to a
server in order to receive an optimized video stream (see
also [12]). During the consumption of the video stream
the usage environment may change, e.g., by connecting
the cell phone to a power outlet. Consequently, the us-
age environment information needs to be updated and
communicated to the server. The first possibility is to
send the complete updated usage environment informa-
tion again. This is however not advisable for the same

reasons as discussed in Section 1. A more sophisticated
possibility is to send only the updated information to the
server using a predefined – and thus application specific
– message format. Due to interoperability reasons, this
is also not an ideal solution. Therefore, a standardized
solution for the second scenario, e.g., dynamic updat-
ing of XML documents using MPEG-7 BiM, is required
which allows the cell phone to send only its updated us-
age environment information to the server in an optimal
and application independent manner.

4.4 Evaluating the XML Parser Models

In the following, the XML parser models as intro-
duced in Section 3 are discussed according to their ap-
plicability for the aforementioned usage scenarios.

A. Scenario 1
For this scenario, all models can be used. The Push

and Pull Models are best suited due to fast process-
ing with the lowest memory requirements because the
binary encoded data does not need to be kept in mem-
ory and can be discarded after processing. Nevertheless,
there are some prerequisites: it is necessary that the bit
stream only contains one AU and one FUU or AUs and
sequences of FUUs that only add information to the de-
scription tree in a depth-first order. If a bit stream does
not fulfill these prerequisites, it is possible that a FUU
modifies the information stored in previous FUUs. If
this is the case, it is necessary to create the description
tree in memory to fully support the FUU update com-
mands. It is also necessary that the BiM parser needs
to process all AUs and FUUs such that all FUUs which
may possibly update the information stored in the cur-
rent description tree are dealt with. Because of this, the
Push and Pull models forfeit their advantage concern-
ing the memory requirement. A possible workaround for
this issue is to preprocess the BiM bit stream in such a
way that it meets the prerequisites as mentioned above.
Note that this workaround is only useful if the same
BiM bit stream is used multiple times. The identifica-
tion whether or not a given bit stream satisfies these
prerequisites is not straightforward.

All other parser models retain their typical character-
istics. As such the Cursor Model has a slight advantage
over the Tree Model as it is slightly more memory effi-
cient. The Mapping Model can be used for application
domain specific applications.

B. Scenario 2
For this scenario, parser models offering only simple

forward navigation cannot be used due to the possibility
that updates in the middle of parsing an XML document
may occur. This means that the Push and Pull Models
are not suitable for this scenario. When new AUs are
received, they can update information that has already
been processed by the parser. Parsers with only for-
ward navigation cannot handle these changes because
the client application has no access to the information
which should be updated. Even if the client applica-
tion is informed that the information was changed, it is



necessary to restart the parsing operation.
The Mapping Model seems to provide the best solu-

tion because the newly received AUs can manipulate the
instantiated classes directly in a fast and straightforward
way. Thus the client application is immediately aware of
the modified information. For the sake of completeness,
however, it must be noted that BiM allows to update
and to add new (fragments of) XML Schema elements
through the schema updates. While some program-
ming languages allow to create and to modify classes at
runtime, these constructs are not optimized (neither in
memory usage nor in processing speed) and difficult to
use by a client application. As such, this solution is ad-
vised if all XML Schema elements are known in advance
(during development of the parser) such that optimized
parsers can be created. This is especially applicable for
standardized and normative schemas.

Finally, the Cursor Model has a slight advantage
over the Tree Model as it has lower memory require-
ments. Furthermore, the fragment update context uses
the XPath syntax to select the update location for which
the internal XPath resolver of the Cursor Model could
be re-used. Moreover, the same XPath expression can
be further used to signal the client application that up-
dates are available without any additional processing
steps.

5. Conclusion

As XML is more and more being used in multimedia
applications to represent the complementary metadata,
the verbosity of the format is becoming a concern, espe-
cially in constrained environments. Using MPEG-7 BiM
makes it possible to encode XML data into a binary bit
stream with good compression while retaining random
access and manipulation of the XML data.

In this paper we investigated the prerequisites in or-
der to create a universal parser capable of handling
both plain text and binary encoded XML-based meta-
data. Therefore five XML parser models were investi-
gated, namely the Tree Model, the Push Model, the Pull
Model, the Cursor Model, and the Mapping Model. We
evaluated the models with respect to their capability to
handle BiM bit streams in two usage scenarios: tradi-
tional XML handling and handling dynamic updates of
XML data.

This research proves that, while the Push and Pull
parser models are fast and have the lowest memory re-
quirements, these models are not appropriate to parse
BiM bit streams. For the traditional XML handling sce-
nario they tend to loose their low memory advantage and
they are not suitable for the second scenario due to their
forward only navigation capability. The Mapping Model
proves to be a very good model, however only for prede-
fined domain specific applications. Finally, the Cursor
Model is to be preferred over the Tree Model, firstly,
due to its better memory requirements, and secondly,
because of the inherent XPath support of the model.

It is therefore clear that the way to go for creating

a universal parser capable of handling plain text and
binary encoded XML data is by creating a parser com-
pliant to the Cursor Model.

References

[1] R. Mohan; J. R. Smith; C.-S. Li, “Adapting Mul-
timedia Internet Content for Universal Access,” in
IEEE Trans. Multimedia, Vol. 1, No. 1, 1999 pp. 104-
114.

[2] B.S. Manjunath; P. Salembier; T. Sikora; Eds., “In-
troduction to MPEG-7: Multimedia Content De-
scription Language,” John Wiley & Sons, ISBN:
0471486787, 2002.

[3] A. Vetro; C. Timmerer; S. Devillers, “Digital Item
Adaptation,” in The MPEG-21 Book, John Wiley &
Sons, 2004.

[4] Frank Nack; Adam T. Lindsay, “Everything you
want to know about MPEG-7: Part1,” in IEEE Mul-
tiMedia, October 1999, pp. 64-73.

[5] I. Burnett; R. Van de Walle; K. Hill; J. Bormans;
F. Pereira, “MPEG-21: Goals and Achievements”, in
IEEE Multimedia, 2003, pp. 60-70.

[6] C. Timmerer; G. Panis; H. Kosch; J. Heuer; H.
Hellwagner; A. Hutter, “Coding format independent
multimedia content adaptation using XML,” in Pro-
ceedings of SPIE ITCom 2003 on Internet Multimedia
Management Systems IV, vol. 5242, September 2003,
pp. 92-103.

[7] M. Cokus; S. Pericas-Geertsen, “XML Binary
Characterization Use Cases,” Technical Report
World Wide Web Consortium (W3C), Available:
http://www.w3.org/TR/2004/WD-xbc-use-cases-
20040728/, July 2004.

[8] “Information Technology - Multimedia Content
Description Interface - Part 1: Systems FDAM
Amd/1,” Technical Report MPEG, ISO/IEC
JTC1/SC29/WG11 N6326, July 2004.

[9] T. Bray; J. Paoli; C. M. Sperberg-McQueen; E.
Maler; F. Yergeau, “Extensible Markupt Language
(XML) 1.0 (Third Edition),” Technical Report World
Wide Web Consortium (W3C), Recommendation,
Available: http://www.w3.org/TR/2004/REC-xml-
20040204/, February 2004.

[10] B. Bos, “The XML Data Model,” Technical Re-
port World Wide Web Consortium (W3C), Available:
http://www.w3.org/XML/datamodel.html.

[11] U. Niedermeier; J. Heuer; A. Hutter; W. Stechele;
A. Kaup, “An MPEG-7 tool for compression and
streaming of XML data,” in The 2002 IEEE Interna-
tional Conference on Multimedia and Expo (ICME),
vol. 1, August 2002, pp. 521-524.

[12] R. De Sutter; S. Lerouge; W. De Neve; P. Lambert;
R. Van de Walle, “Advanced mobile multimedia ap-
plications using MPEG-21 and time-dependent meta-
data,” in Proceedings of SPIE ITCom 2003 on Inter-
net Multimedia Management Systems IV, vol. 5241,
September 2003, pp. 147-156.


